Targeted disruption of hsp70.1 sensitizes to osmotic stress.
نویسندگان
چکیده
The 70 kDa heat shock protein (Hsp70) plays a critical role in cell survival and thermotolerance in response to various stress stimuli. Two nearly identical genes, hsp70.1 and hsp70.3, in response to environmental stress, rapidly induce Hsp70. However, it remains unclear whether these two genes are differentially regulated by various stresses. To address the physiological role of the hsp70.1 and hsp70.3 genes in the stress response, we generated mice that specifically lack hsp70.1. In contrast to heat shock, which rapidly induced both hsp70.1 and hsp70.3 mRNA, osmotic stress selectively induced transcription of hsp70.1. In hsp70.1-deficient embryonic fibroblasts, osmotic stress markedly reduced cell viability. Furthermore, when osmotic stress was applied in vivo, hsp70.1-deficient mice exhibited increased apoptosis in the renal medulla. Taken together, our results demonstrate that differential expression of hsp70 genes contributes to the stress response and that the hsp70.1 gene plays a critical role in osmotolerance.
منابع مشابه
Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene.
The murine hsp70 gene family includes the evolutionarily conserved hsp70.1 and hsp70.3 genes, which are the major proteins induced by heat and other stress stimuli. hsp70.1 and hsp70.3 encode identical proteins which protect cells and facilitate their recovery from stress-induced damage. While the hsp70 gene family has been widely studied and the roles of the proteins it encodes as molecular ch...
متن کاملNFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment.
Osmotic stress responses are critical not only to the survival of unicellular organisms but also to the normal function of the mammalian kidney. However, the extent to which cells outside the kidney rely on osmotic stress responses in vivo remains unknown. Nuclear factor of activated T cells 5 (NFAT5)/tonicity enhancer binding protein (TonEBP), the only known osmosensitive mammalian transcripti...
متن کاملc-Jun NH2-terminal kinase-2 mediates osmotic stress-induced tight junction disruption in the intestinal epithelium.
Gastrointestinal epithelium faces osmotic stress, both at physiological and pathophysiological conditions. JNK activation is an immediate cellular response to osmotic stress. We investigated the effect of osmotic stress on intestinal epithelial barrier function and delineated the role of JNK2 in osmotic stress-induced tight junction (TJ) regulation in Caco-2 cell monolayers and ileum of Jnk(-/-...
متن کاملTargeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice.
BACKGROUND AND PURPOSE Heat-shock proteins (HSPs) are highly conserved proteins that are induced by a variety of stresses. HSP70 is a 70-kDa HSP family known to have cytoprotective effects against various insults. The role of HSP70 in cerebral ischemia remains to be elucidated in vivo. METHODS To investigate the effect of reduced HSP70 levels on cerebral ischemia, focal cerebral ischemia by i...
متن کاملHsp70 Architecture: The Formation of Novel Polymeric Structures of Hsp70.1 and Hsc70 after Proteotoxic Stress
Heat induces Hsp70.1 (HSPA1) and Hsc70 (HSPA8) to form complex detergent insoluble cytoplasmic and nuclear structures that are distinct from the cytoskeleton and internal cell membranes. These novel structures have not been observed by earlier immunofluorescence studies as they are obscured by the abundance of soluble Hsp70.1/Hsc70 present in cells. While resistant to detergents, these Hsp70 st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 3 9 شماره
صفحات -
تاریخ انتشار 2002